mproving Manufacturing in the
Pharmaceutical Industry through the
mplementation of Continuous Processing

Batch Processes have and will continue to fulfill an important role in the manufacture of
Active Drug Substance; they allow multiple recipes to be executed in the same core
equipment. However, the compromise is, batch fails to deliver the precision, speed of
manufacture and intensification of a flow process.

Here | present how, at GSK, we are developing flow processes for organometallic
chemistry. Using process understanding generated using batch methods, and a
combination of insilico simulation and physical demonstration we are able to redefine
conventional operating parameters for this type of chemistry and industrialise
processes which are not feasible in batch due to risk of scale.

We believe this will allow us to deliver more medicines of value to patients, both in
affordability and function




Flow Chemistry at GSK
Where We Are @

2003 Started Programme

2016 Gain First Commercial Credibility for 3
Stage Process.

Clinical Campaign of Organometallic Flow
Process Case Study.

2017-2021 Design/Build the Space to house the
next Phase of Projects

Process Process
understanding Simulation

Route
selection

Analytical

techniques <> Replicated
\/ Precise
\/ Automated
\/ Intensified
V Quick and Agile

We want a Manufacturing solution with these attributes...
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Flow Chemistry at GSK @

Where We Aim to Be

Pharma has been working on a knowledge and trial and error principal. Development has

been governed by statistical models and small scale increment changes until manufacturing
scale.

GSK is partially converting its API batch portfolio to continuous with a great ambition to reach
up to 50% by 2020.

To support this strategy, simulation has to be integrated at the centre of process development
to;

= Accelerate process development
= Provide more robustness in the development phase
= Ensure and understanding from scale to scale

Batch is following the transition and integrate simulation as part of the workflow.




Organometallic Chemistry @

Batch Process

Organometallic chemistry is common place in pharmaceutical synthesis and often presents a challenging
process to execute in batch.

Substrate Organometallic Reagent

Batch is.... | Batch is also....

Versatile. Imprecise.

Available across Hard to scale up.

scales.

Labour intensive and
Slow.

Familiar to
chemists




Organometallic Chemistry @

Flow Process

A team at GSK have been developing process workflow for effective design and scale up of
continuous organometallic processes which is currently being applied to a number of

processes in active development.

Limited

Hold Times

Low Inventory System




How do We Allow the Transition to Happen

From Laboratories to Manufacture

Plot Variable: response (Model. Total_Uxilty. Total_Utilty)

Industrialisation

I
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Case Study
P38 Kinase Inhibition of Inflammatory Pathways

— Rheumatoid Arthritis — Candidate selected 2003 o H\k
— Atherosclerosis

X
— Depression N' /

— Neuropathic pain
— Acute Coronary Syndrome - Phlll

_ COPD i AV

— Focal Segmental Glomerular Sclerosis Losmapimod

— Stage 1 — Flow Synthesis (va(%sgslf 3X)




Case Study

Flow Stage Development
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Process Understanding

Kinetics & Calorimetry

Kinetics Calorimetry
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Simulation

PFR Model
HXM 1 m————- - \
) '
Feed '
e /\/ : !
i
Grignard ' | Step 3: Borate
Feed Quench
\ Step 2 Exchange )
0.2
Matching ;
016

— Temperature profile
— Residence times
— Reagent concentrations & flow rates

Define process parameter ranges and
the equipment performance,;

— Heat Transfer Coefficient

— Surface Area to Volume Ratio

— Micro mixing

— Bodenstein Number

012

0.08

0.04

Starting Material

Methyl Grignard

Aryl Grignard

0.0
0.0

0.1

0.z 0.3 0.4

Time (=}

0.5
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User Requirement Specification @

Continuous Process

The simulation demonstrates process robustness low sensitivity to parameter inputs allowing
the simplest design concept.

Plug flow reactor with static mixer;

U =0 W/m2.K (adiabatic)

I

L, L,

Mixing Zone Residence Time Zone
T,ix<0.5S 1<0.5s
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Demonstration
PEFR Model

12



Demonstration

Continuous Process

To 'PrMgCl
“reactor”

solution feed




Demonstration

Process Control
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Demonstration
Work Up

MgCl

B(OMe), B(OH),

B(OMe

CO,MgCl

Acid Quench

CO,MgCl CO,H

— Initial intent: to flow directly into a quench pot containing the trimethyl borate

— Extended addition time gave higher levels of the borinic acid

M

HO

CO,H

CO,H

Addition time (min) Borinic acid level
HPLC (%a/a)
0.5 1.3
3.5 4.2
8 7.9
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Demonstration

F

Work Up

CO,MgClI

MgCl B_(OMe)3 NTgCl B(OMe),

B(OMe)3
L ks . F B(OMe)
CO,MgClI F CO,MgCl F CO,MgCl T
A:ryl "Boronatf Borate MgCl
Grinard Complex CiMgO,C F
Borinic ester
F CO,MgClI

* If k; and k; fast but k, slow?.....

» Rate of addition relative to progression of the “ate” complex controls borinic
levels
« Rapid trimethyl borate addition to the Grignard solution preferable

19



Simulation

@

Design Space and QbD
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Industrialisation

Scale Independent Design

Mixing
Zone

Residence
Time Zone

vV,

SMX
200 mm
3.9 mm
THF
220 mL/min
40 mL/min

1.2 mL

2.500

2000
1500 A
3
1.000

0.500 A4

0.000

Coefficient of Variation (CoV)

E éiﬂ JT S : g :
} : Njg E g § §J z
K27 2 b % B ¢
B = P 5\%
i ™, |
20 n}
A-A

80 C

Mixing
Zone

Residence
Time Zone
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Industrialisation

In Practice

Processes have been demonstrated at production rates of;

« Lab scale ~100g/hr

Isolated Yield 70% th
Isolated Quality 99.7% a/a

 Pilot plant scale ~500g/hr.

Operating as a flow process

Enabling operating conditions which are not feasible as a
batch operation.

Eliminating a potential critical quality attribute.

A recent pilot plant campaign
produced 88.2 kg of clinical material.

Yields averaged 84.95% th.
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